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are discussed. Applications of the problem involve the estimation of reliability from
stress~strength relationships, where a component is subject to several stresses (sev-
eral strengths) whereas its strength (stress) is a single random variable.
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where only continuity of the cumulative distribution functions of N + 1 random varia-
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CHAPTER 1

INTRODUCTION

In the past few years, many authors (e.g., Z. W. Birnbaum, McCarty,
Church, Harris, VanDantzig, Govindarajulu, Mann, Whitney, Mazumdar, Owen,
Sen, etc.) have attempted to estimate and give the confidence bounds for
the reliability of a component using the probability arguments of a cer-
tain physical model of failure. According to this model a component fails
if at any moment the applied stress (or load), say Y, is greater than the
resistance, say X. That is, the problem here is to find an estimate of
the probability that X is less than Y, where X and Y are both random
variables, having some known or unknown probability structure, and to find
the confidence limits on this estimate of the probability. An extensive
amount of work has been done on this problem by the above mentioned
authors and many others, and some, for example, Mann and Whitney [9],
Mazumdar [10]), Church and Harris {3] etc. have given practical uses for
the results.

The question now arises of what to do if at any moment the applied
stress (or load or force) may not be measured in terms of a single random
variable, but can be measured in terms of several random variables, say
x;,xz,....xN, and the resistance 1s still a single random variable, say Y.
These random variables Xl,Xz,....XN,Y may have a known (specified) prob-

ability structure to a certain extent or the structure may be completely
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unspecified except that in this latter case independence of the X's is
assumed. In some cases, it might be possible to arrive at a suitable
mathematical model which allows one to compute deterministically the
"over-all stress" at different points of time corresponding to a given
set of "initial stresses," and initial conditions, but it may not be pos-
sible in all the cases, especially when all the initial stresses are
random variables. For example, the over-all stress, say X, may be a
suitable linear combination of all the initial stresses Xl,...,XN. with

N
x;,...,xN being random variables. Thus, writing X = I C.X C,'s

1=1 11 * 71
being real constants, the problem is to estimate Ci's, the parameters
involved in order to estimate the over-all stress X. A robust way to
estimate these constants is still under consideration. Some authors have
attempted to estimate these constants using the mixture of probability
distributions techniques in some simple cases, for example when N = 2
and X;, X2 are independent normal random variables. The problem is even
more complicated if the over-all stress is a nonlinear combination of the
initial stresses.

In many cases, a component does not fail if all the different
stresses x,,...,xN are simultaneously less than the resistance Y. Then,
a measure of reliability of a component subject to several different stresses
during a given period [0,T] is taken to be the probability that all the
different stresses are simultaneously less than the resistance during the

entire interval, i.e.

(1.1) p = Prob {X; <Y, X2 <Y,...,xN<y},

Church and Harris [3] and Mazumdar [10] considered the example of




missile flights, where the several different stresses are the propulsive
force, angles of elevation, changes in atmospheric condition, and so on.
They assumed that all these different stresses have known distributions,
and a mathematical model is available to compute the over-all stress,
and also the distribution of over-all stress is known. However, these
assumptions might not be true in a given physical situationm.

Another similar problem of interest is that where during a given
time period [0,T] the stress or force could be measured in terms of one
random variable, say X whereas a component might consist of several dif-
ferent objects subject to different resistances. For example, suppose
the electric current is supplied to a component consisting of several dif-
ferent transistors each of which has a different capacity to resist the
current. Thus, the component breaks if the current supplied to the com-
ponent exceeds the capacity of any of the transistors. Hence, denoting
the stress or force of the component by X, and the several different re-
sistances by Y;,Yz,...,YN, the component does not fail if the applied
force or stress X is simultaneously less than the several different resis-
tances. A measure of reliability of a component subject to single force
and various resistances during a given period [0,T] can be taken to be the
Probability that the applied force is simultaneously less than the several

different resistances during the entire interval, i.e.
(1.2) q = Prob {X<Y1,...,X<YN}.

where X,Y;,...,YN are all random variables.

The principal objective of the material presented here is to esti-

mate p and q defined above.




Chapter II consists of parametric estimation of p, assuming that
Xl,...,XN,Y have certain probability structures.

Chapter III consistc ~f a non-parametric approach to estimate p
for a much more general situation, i.e., Xl,...,XN,Y arc all independent
random variables having different absolutely continuous distribution
functions. A statistic is proposed and shown to estimate p unbiasedly.
The variance of this statistic is computed and used to show that this
estimate of p is consistent.

Chapter IV is devoted to the estimation of q. Analogous results to
Chapter II and III are given and some more results of practical importance

are included.

Finally, Chapter V consists of a summary and suggestions for further

research.




CHAPTER II

PARAMETRIC ESTIMATION

2.1 Introduction

Owen, Craswell and Hanson [12], Govindarajula [5]}, Church and Harris
[3], etc. have given maximum likelihood estimates and confidence intervals
for Prob {X < Y} under the assumptions that X and Y have a bivariate nor-
mal distribution with some parameters known, and for the case when X and
Y are independent, and when they are paired. Mazumdar [10] has given the
minimum variance unbiased estimate for Prob {X < Y} when X is assumed to
be normally distributed with known mean and known variance; also Y is
normally distributed with unknown mean, known or unknown variance and X,Y
being independent. He also derived interval estimates for these cases.

In this chapter, we shall consider the estimation of tihe probability

that N random variables x,,...,xN are simultaneously less than a random

variable Y, where these random variables are mutually independent,

2.2 Useful Lemmas

Let x,,...,xN,Y be (N + 1) mutually independent random variables with
continuous cumulative distribution functions (c.d.f.'s) Fl.Fz,...,FN,G
respectively and let

(2.1) T= ml.x(XI'co-px-N)

and have a c.d.f. ¥H., Also, let




p = Prob{X; < Y,.o..,X < Yh

Then, the problem of estimating p is simplified using the following lemmas.

Lemma 2.1

P(X; < Y,...,xN <Y) = P(T <Y).

Lemma 2.2

N
H(t) = P(T<t) = I F (v),
1=l

Proof
H(t) = P(T<t) = P(max(Xy,...,X0) < t)
= P(Xlit,---,&;f_t)
= P(X; < t).... . P(X, < t)
N g
n
i=]

Fi(t)'

Since H(t) 1s a function of continuous c.d.f.'s H(t) itself is continuous
and so the probability of getting ties from the c.d.f. H is zero. More-
over, the random variable T is independent of the random variable Y.

Now, suppose F; = F; = FN = F, i.e., the random variables x;,...,xN
have the same continuous c.d.f. F. Also, F has the density f and Y has
the continuous c.d.f. G with the density g, and all these random variables
are mutually independent. Then, the density function of the random vari-

able T = max(x1,...,XN) is given as
(2.2) n(L) = NCFE)V T £

and thus,

Lemma 2.3

———

2.9  p - I[v(yn” 4G (y)

]




Proof
p=P(T<Y)

= E,P(T < Y|Y)

-r (F(n 1Y dety) .

-0

Lemma 2.4

If F; = F3 = F

N = G, then

I
P N °

Proof

In this case, from Equation (2.3)

p= (w FN(y)dF(y)

2.3 Estimation of p when xl,xz,...,xN,Y are all independent normal

Let ¢ and ¢ denote the cumulative distribution frunction and the

density of a standard normal random variable respectively, i.e.,

1 -1/2 y?
(2.4) P(y) = —=75 e e <y<e
(2n)1/2
and
> 4
(2.5) ¥(x) = I o(y)dy.

Further, let the different stresses X;,...,XN be all independent and
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identically distributed normal random variable with mean 1, variance o2.

Also, let Y be normal with mean Vv, variance T2 and independent of all the

X's. Then bv lemma 2.3,

P A - ggrbew? o - FE-w?
A L NV R V7% &
-0 = (2“) o (2") T
- j N2y 4(2)dn
2

o G2t e - w
= d) T! 1/2 ¢(Z)dz
-0 A - gr3+2)

~

© 1/2
- J 2 @275 ¢ (2)ae
(1-0)

-00

= FN(H : ) , sav

The function FN(E,O) has been tabulated by Shant{i S. Gupta [6] for given
values of n(> 0), N and H. FN(ﬁ,p) ‘s the probability that each of N
standarized normal variables wiih equal correlation p will not exceed H.

This is the case in the present problem, since
P{X; < Y,...,X, <Y} = P{X; -Y~<0,...,X, -~ Y < 0}

N N
P (x 1 "Y) - (]J-\)) < v -1Uu (XN"Y) - (u"\))
) 172 72 o
(ﬂz + TZ) (02 + T2) (6? + 12)

D T
(ﬂ2 + 12)1/2 i
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=g=

For all { = 1,...,N, the random variable

(Xi-Y)-(u-v)
1/2

(02 + 12)
is a standarized normal random variable. Moreover, for i # j, the cor-
relation coefficient between

Xy =Y - (w=-v) (XJ-Y)-(u-v)

and 18 4 & .
(02 + Tz)lﬁ (02 + Tz)l/z o 4+ T

FN(ﬁ,p) also gives the probability that the minimum of a set of N
equally correlated standardized normal random variables exceeds -H.

Thus, if u, v, 0?2 and 12 are known we can evaluate p using Gupta's
table. However if y, v, 02, T2 are unknown, or some of them are unknown,
we can use their maximum likelihood estimates., If u, v, 92 and T2 are
unknown, and 1if the samples

x11 ""’xini i=1,...,N,

ylu-'vym

are available, let

n,
- 1 -
X, = = L x , i=1,...,N,
i n, =1 13
n
i
2 1 S \2
g = =— I (x -x%x.)°,
i n, s 14 i
N
- 1 -
x = = I x ,
N =1 i
N 2
I n,s
o2 . 1wl 1!
N ’
I n
=1 1
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(s")? =

g

T o(y, -,
k=1 K

Then, the maximum likelihood estimate of p, in view of Zehna's [18] result
that the maximum likelihood estimate remains invariant although p is not

a one-to-one function of u, v, ¢? and Tz, is

6 = FN(H’S) ]
PS 8’

where [¢] -s——:_—(-;r)-r »
iow Lo X

6+ @)Y

This estimate, again, can be evaluated using Gupta's table [6], however

the properties of this estimate are extremely difficult to explore.

2.4 Minimum Variance Unbiased Estimation of p in Some Cases

Let X, Y, Z be independent normal with means Uys uy and u, respectively

and equal variance 0?. Then we want to estimate

p = P{Xx<2z, Y<2z}

= P{X-2<0, Y-2<0}

Now, (X - Z, Y - 2) is bivariate normally distributed with means (ux - uy,

U o- uz) and covariance matrix

y
2 1
o?
1 2
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Thus,
X~2) -(u ~u) u -u
p=P X 2. .z x_
{ @2, 1?5
(Y ~2) - (u - }
Y
(2)1/2 o (2)172
Now,
((x ~-2Z) - (ux - uz) Y -2) - (uy - uz)
(2)1/2 o (2)1/2 o

is bivariate normal with zero means,unit variances and correlation coef-

ficient equal to 1/2. Thus
o . B(uz-ux My = M l)
’ ] ?
(2)1/20 (2)1/20 2
where

h (K 1 2 2
(2.6) B(h,K,p) = ———77 f J e T(T-pD) X "20%¥4Y7) geqy .
zn(l—p )

-0 w0

D. B, Owen [11] considered evaluation of the function B(h,K,p) using the

related function T(h,a) defined by

a exp{- %hz(l + x%)}
1+ x°

T(h,a) = i% I dx .

o

He derived various relations connecting B(h, K, p) and T(h,a). The func-
tion T(h,a) and its differences are tabulated hv Owen in [11]. Using his
tables and relations one can obtain the volume under a bivariate surface
over any polygon.

Assume that samples (x;,...,xz), (yl....,ym) and (z;,...,zn) are

available. If ux. uy, uz, and 0 are unknown, we substitute their maximum




likelihood estimates to obtain the maximum likelihood estimate of p as

~ z - X z -y 1
p"B(z X ’z Z s 3
(2)1/29 (2)1/25 2
where ) ) 2
x = = I x »
[} 1=l i
m
- 1
- = 7
y mi-lyj »
n
zZ = %- X Z
k=l
and
2 1 x -2, -2 =2
8° = T [?(xi-x) +§(yj-y) +§L(zk-2)] .
Theorem 2.1

If the means ux, uy and variance 0? are known, but uz is unknown
and the data (zl,...,zn) on Z are available, then the minimum variance

unbiased estimate of p is given as

z =My z- ?y n-l)

1,1/2° 1,1/2 * 2n-1
- ;") o(2 - ;)

- B(

>

where 1 M
z = = L zZ, -
k=]
Moreover, this estimate is asymptotically equivalent to the maximum like-
lihood estimate.
Proof

Let W and V be independent normal random variables, independent

of 2, with means 0 and variance 02, and let
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. -{ 1 if-z;+w<-ux. -z;+V<-uy

0 otherwise ’
then
E(I) = P(-z; + W < U, s -2z + V< -uy)
(-z, + W+ M, M, = My -z + V + M, M, - uy)
- P < , <
(2)1/20 (2)1/20 (2)1/20 (2)1[20
i B(uz -, My = Hy 1,
» ]
@Y% ' il 2
- p .
-21+W+uz —21+V+uz
Since ¢ 172 172 ) 1is bivariate normal with zero
(2)™" %o ()" "o

means, unit variances and correlation coefficient equal to 1/2,

Since z is a complete sufficient statistic, it follows from the Rao-
Blackwell and Lehmann-Scheffe” thcorems that the conditional expectation
E(I‘E) is the minimum variance unbiased (m.v.u.) estimate of p.

Let Np(u,Z) denote the p-variate normal distribution with mean vec-

tor Y and variance-covariance matrix I; then,

- g2 o? o2
z u ———— - — - ———
z l‘lz n n
[+ 2 2
-z + W ~ N -uz ol - 20 (o] ,
a2 2 2
- - - — o
21 +V uz " 20

vhere ~ denotes "distributed" as.
Now, using 8a.2(v), Page 441, Rao [14], the conditional distribution

of (-2, +W , =-z; + V) given z 1s

2 2
b 2 g 2 o
- 3¢ - — O = ==
N2 z N 2 n n .
2 2
-2 02 - 9_ 202 - .O__
n n
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and the conditional correlation coefficient is 2::1 .
Thus,
P = E(I|z) = P{~z; + W < U ~Z1+ V< -pyﬁ}
P{—z,+w+2<"'“x -z +v+z 2T Yy -
_ 1,172 1,1/2 1,1/2 1,1/2
o(2 n) a(2 n) o(2- n) o(2- “)
it.e. - _
z - z -
P = B( u,{ 17z ° u{ iz zn:i )
(2- 2 o(2- 2) "

and the maximum likelihood estimate of p in this situation is

E'Ux E"Uy 1)
(2)1/20 * (2)1/20 * 2 ‘

p = B(

Thus, as n becomes large, the minimum variance unbiased estimate approaches

in the limit to the maximum likelihood estimate.

Theorem 2.2
If the mean uz and variance 02 are known but the means ux and uy are
unknown, and the data (xx,...,xz) . (yl,...,ym) on X and Y respectively

are available, then the m.v.u. es-imate of p is given by

A

p = B(

uz - X M T Y 1
1 1

, )
(2 I)1/2 1/2

1 1
[(2- P2- D]

where

*
]
o] =
™M
»®

m
Ly
ym1

<
]
3 |

Moreover, as % and m become large, this estimate approaches in the limit

to the maximum likelihood estimata.
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Proof

Using the same technique as in the proof of Theorem 2.1, let W be

a normal random variable, independent of X and Y, with mean 0 and variance
o?, and let
. {1 Exp+Weay, , y1r+W<u

0 othervise.

Then
E(I)-P(x,+w<uz , y,+w<uz)
+W- - + W - -
} P(xx M . Wy = My ’ y1 My ) W, T Wy )
(2)1/20 (2)1/243 (2)1720 (z)ﬁzg

M. - U H_ - U
- p(2—+% , 2_JY 1,
(2)1/20 (2)1/20 2

P .

Since (x,y) is a complete sufficient statistic, it follows from the Rao-
Blackwell and Lehmann-Scheffe” theorem that the conditional expectation

E(I[§.;) is the m.v.u. estimate of p. Now

2 2

- o o

: o (%0 %

- o o

y ~ Ny uy ’ 0 m 0 m .
x1 + W el 0 202 o?
1 Ux g

+ W 0 o o? 262
y1 Uy -

Using 8a.2(V) Page 441, Rao [14], the conditfonal distribution of (x; + W,

y1 + W) given (;,;) is

=
[
Q
~
]

N2 »

<1
Q
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and conditional correlation coefficient is 1
(e -4 - 412
L m
and hence the m.v.u. estimate of p is
PPt , y1+W<ulxy)
- p{XLt W - X < v, - % Y1+ W-y Yy =Y
1,1/2 1,1/2 1,1/2 - L11/2
a(2 - 2) (2 - 2) og(2 - m) (2 n?
- B(uz - X - uz -y ; 1 1/2)
1,172 1,1/2 1 1
o(2 - i? o(2 - ;? (2 - z)(Z - m)]

and this estimate is asymptotically equivalent to the maximum likelihood

estimate as £, m become large.




CHAPTER 1I1

NON-PARAMETRIC ESTIMATION

3.1 Introduction

Mann and Whitney (9] proposed a U statistic which estimates unbiasedly
the probability that X is less than Y where X and Y are both random vari—
ables. The U statistic is based on the ranks of observations in the pooled
samples of X's and Y's. It is also used for testing the hypothesis that
X's and Y's come from the same populatiocn versus the alternative that X
is stochastically smaller than Y. Many properties of this estimate have
been discussed by numerous authors.

Here, a statistic is proposed to estimate the probability that all of
the N random variables X;, xz,...,xN are simultaneously less than a random
variagble Y. It is assumed that X's and Y's have continuous cumulative
distribution functions (c.d.f.'s) and that all are mutually independent.
Some properties of the proposed estimators are also discussed.

We shall first start with the zimple case when N = 2, Let X, Y, Z
be mutually independent random variables with continuous c.d.f.'s F;, F;

and G respectively, and let

(3.1) p=Prob{x<z , Y<2z},
Again let

(3.2) KireoosXp 3 YiseoesYp 5 Zlreeon2,

be samples of X, Y and Z respectively. Furthermore, we arrange the samples

-17-
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of L x's, my's and n z's in ascending order and let W count the number
0¢ times an x and a y precedes a z, i.e.,
W = number of triplets (xi, yj, zk) such that X, <z and yj <z
i=1,...,28
i=1,...,m
k=1,...,n
then p = 3%; can be used to estimate the parameter p. The properties

of this particular estimator will be explored in the following sections.

-
i

-
el

Fstimation of p and an Example

L2y someies (2.2) be available and let

A B R
2 ik i
0 otherwise.

Furthermore, let
Uik ™ %uPyke

then

2 m n
W = I I L a,b
=1 j=1 kel iKIK
Lemma 3.1
A W
P = Tm is an unbiased estimate of p.
Proof
. 1
E(p) = Tom i ? E E(Uijk)
1 Lmn
= N -
m’;;ip P
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Since U = 1 if and only if (iff) X, < z, and y, < z

13k j " and so

E(U) 4k

)BP(x1<zk’yj<zk)-p.
Example 3.1
Let £ = 4, m = 3, n = 2 and consider the observations

X2 <y3<zz <x1 <Xy <y <21 <x3<Yy2,

There are 6 values of (x,y) which are less than z;.
There is 1 value of (x,y) which is less than z;.
Thus the experimental value of W is

w=6+1=7,
and 7
p= 2%
Also
ay1 =1, a1 =1, a31 =0, ay, =0, aj2 = 0, a2z =1, as= 0,

ayz = 0,
and
bjy = 1, ba; =0, b3y = 1, b2 = 0, bz =0, bz = 1,

so that
L b 3 2 ,
P = tm 1f1 3%k by T 7@

3.3 Properties of P

In this section we shall compute the variance of § and use this
variance to show that P is a consistent estimate of p. Let
T = max(X,Y),
and H denote the c.d.f. of T which is continuois because H is a function

of c.d.f.'s of X and Y and the ¢.d.f.'s of X and Y are continuous by as-
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sumption. Then
p = Prob{X <2z, Y <2}
= Prob{T < Z}

= E,Prob{T < z|z}

(where E denotes the expectation operator)

z
= fm dG(z) J di(t)

= Iw H(z)dG(z) ,

-0

i,e.,
(3.4) p = (” H(z)dG(z) .
)
Also,
1-p = P{z < T}

= E.{z < T|T}

= [wc(t)dﬂ(t) .
Thus,

(3.5) 1-p = [w G(t)dH(t) .

-00

Now, let

y? = O;(z) = EZ[H(z) - EZ(H(z))]2

= J (H(z) - fmu(z)dﬂ(z)]de(z)

-Ct)
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= [m (H(z) -~ p)? dG(z) using (3.4).

-0
Thus, it follows that

(3.6) [mﬂz(z)dG(z) = Y2 + p2,

-0

Again, let

X2 = 0fepy = EplG(D) - Ep(G(m)]?
- r[cu‘) - rG(T)dH(T)lde(T)

= Jw[ccr) - 1+ p)2dH(T) , using (3.5)

-0

Hence,

(3.7) r(l - G(t))%dH(t) = x? + p2.

=00

We shall use the above relations in deriving the variance of .

Also used are

Uy *

x

[ ]
™Mo
[T R-
M3

and
E(W) = fmnp .

Theorem 3.1
The variance of W is given by
Var(W) = [ (n-1)9® + (~1)(L +m - DX + (L + m -~ 1)p

+ {(-1)2 +m - 2) - 1}p?]
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Broof
Var(W) = E(W?) - (E(W))?

- E(wz) - (9'mnp)z ’

so that we need to compute E(W?).

2 m n )
E(W?) sE(Z £ I Uu,,)
{=] j=1 k=1 13k
L £ m m n n

=E(L I I I I U, U .
(1-1 1'=] jul 1‘51 kel k'wp MK 1'1'%"

To compute this expected value we shall consider the following cases.
1) 1=4' j=3', k=k',

2 =
Here Uijk Ui'j'k' Uijk 1 4if and only if (iff)

g <
Xy < z, and }j Z,
Thus,

E(Uijk Ui'j'k') - P(xi < zk ’ yj < zk) - Pp.

1) 1 =4', j=3', k$k'.

Here Uijk Uijk' = 1 {iff max(xi,yj) < 2, and max(x

1’yj k'

i.e. 1ff t < z, and t < Zer s

where t = max(xi,yj) s

thus

E(Uijk Uijk') = P(t <z and t < zk,)

k

=EP(z >t , z,> t]t)

k'

-00 t t

since for k # k', 2,5 2,4 are independent
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- r(l - G(t))?dH(t)

-0

= x2 + p2 using (3.7).
1) 1 =1', J 43", kA k" .
Here Uijk Uij'k' = 1 iff max(xi.yj) < z, and max(xi,yj,)< z
t.e. 1ff t; < zy and t; < Zpr
where t, = max(xi,yj)
ty = max(xi,yj.)
Note that t; may be equal to t; with nonzero probability, i.e. when t,
and t; are the same observations. Thus
EQUy 5 Uij.k.) = P(t1 <z, ta < zk-|t1 =t; = t)
+ P(t; < 2 t: < zk.ltl ¥ ty)
= y?+ p? + p?
= x*+ 297,
using case (ii) and noting that when t; ¥ t2 and k ¥ k',

P(ty <z 5 t2 < 2z0) = Pty <z )P(t2 < z,,) = p.

iv) 1=4", %3, k=k'.
Here Uijk Uij'k =1 iff max(xi.yj) < z and max(xi,yj,) < Z,
l.e. 1ff t; < z, and tz < z

where t; = max(xi.yj) and tp; = mlx(xinyj|) .

Again, t, may be equal to t; with nonzero probability. Thus




}l

LU Uy = P(E1 < 2, £ < 2 lt1 = t2 = ¢)

+ P(t, < 2 0 t2 < Zkltx ¥ ta)

P(t < z) +E P(t; < z, » t2 < zklzk)

%k
2 z
=p+ Imdc(zk) I * aucey) I * a(es)

=p+ fw (H(zy ))2d6(z,)

= p+ Y? + p? using (3.6).

v) 144", 4=4' k=Kk"
By symmetrv as in case (iv) we have

- 2 2
E(Uijk Ui.jk) p+ Y+ p°.

vi) 144", §=3", k$Kk'.
By symmetry as in case (111i), we have

- y2 2

vii) 141", J4 3", k= k'

Here Uijk Ui'j'k = 1 1iff max(xi.yj) < z, and max(xi.,yj,) < z,

i.e. 1ff t) <z and t, < z

k k*

where t, = max(xi.yj) and t; = max(xioyyj.).
In this case t; # t, with probability 1. Thus

E(Uijk Ui'j'k) = P(t; < zZ, » t2 < zk)

= y? + p? using the result from case (iv).
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viii) 141", J 434", kK ¥ k'
In this case Uijk , Ui'j'k' are independent, so that

2

E(uijk ui'j'k') - P .

Hence,
2 i m m n n
E(W¥) = % I = I I I EQ

U L ] l)
i=1 1'al j=1 §'=1 k=1 k'=l ik "1'j'k

= fmnp + fan(n-1) (x> + p?) + m(m-1)n(n-1) o2 + 2p?)
+ fm(m=1)n(p + Y2 + p?) + L(2-L)mn(p + ¥2 + p?)
+ 2(2-m(a-1) (x* + 2p?) + L(2-1)m(m-1)n(y* + p?)

+ 2(2-)m(m~1)n(n-1)p? .

Hence denoting by 02, the variance of W, we have
o? = E(W?) - (E(W))?
= fmip + (-1)&* + p?) + (@-1)(n~1) & + 2p®) + (m-1)(p + ¥ + p?)
(2-1)(p + ¥* + p?) + (2-1) (n=1) (x* + 2p?)
+ (2-1) (m=1) (¥* + p?) + (£-1)(m-1) (n-1)p? ~ Lmnp?)

+

Len[(fo=1)® + (n=1)(L +m - 1)y? + (L +m - 1)p

+

{(n-1)(2 + m ~ 2) - 1}p2].

Lemma 3. 2
‘bz < p(1~p), and

(3.8) 2
X° < p(l-p) .

Proof
From (3.6) we have
0< Y= r (H(z))“dG(z) - p?

-l
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2 f” H(z)dG(z) - p*

-
=p - p?
= p(l~p) .
Similarly, from (3.7) we have
Oixz-rcl-ﬂwﬂmu)-f

=00

.’;r (1 - G(t) daH(t) ~ p?

=00

=1 - fwccc)dmcc) - p?

-ty
= p - p?
= p(l-p) .

Theorem 3.2

~

W
P = im is consistent estimate of p

Proof
Var(®) = 3~ mln Var(w)
= E%E [(Am=1) ¥2 4+ (n-1)(R + m - 1))(2 + (2 +m-1)p
+ {(n=1)(2 + m - 2)-1}p?)
< ﬁ [(4m-1)p(1-p) + (n=1)(L + m ~ 1)p(1-p)
+ (2 +m - 1p + {(n-1) (24m-2)-1}p?)
- I%E [(Am+ n+m-n-1p-(Am+n - 1)p?]
1,1 1 1
LR EY B B SR IS TF )

+0 as L,myn > >,
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3.4 On a Use of a Bivariate Extension of the U Statistic

D. R. Whitney {17] considered a Bivariatc extension of the U statis-
tic, Let

U = number of pairs (xi,zk) such that x, < z

i k’

V = number of pairs (y ) such that y1 < zZ,» where

1%
1=1,..., .3
I=1,.0., m;
k=1,..., n.
He proposed a test based on the two statistics U and V to test the hypothe-
sis H that G = F; = F, against the alternative that G > F,, G > F; or say
G > F, > F2. As a critical region for the hypothesis H with the alterna-
tive G > Fy, G > F;, he proposed to use U < K;, V < K, or with the alter-

native G > Fy > F2, U > K3, V < Ky where the constants K, are chosen to

i
give the correct significance level. He obtained recurrence relations to
determine the probability of a given (U,V) in a sample of 2x's, my's and
nz's., He also evaluated moments of the joint distribution of U and V under
the null hypothesis H that G = F; = F; and showed the limit distribution
to be Bivariate normal.

Unfortunately, we could not find a suitable statistic based on U and
V to estimate the parameter p unbiasedly. However, the statistics U, V

and ¥ can be used to estimate the product of marginal probabilities, viz.,

P1°p2 where,
P{X < 2}, and

P:

p2 = plY < z}.

The statistics v
Pl-Hpmd

L
mn




satisfy E(B)) = p, , E(P,) = P2 . Moreover §;, P2 have other nice

properties by themselves, but

E(P1P2) ¥ pip2

since Py and P2 are not independent. However the following theorem

gives an unbiased e:timate of the product p;p; .

Theorem 3.3

A = UV-W
P31 ® w1

is an unbiased estimate of P1P2 .
Proof

First, note that

2 n

U= akady 8y 0
m n

V= I I b
j=1 k=1 Tk’

so that
£ n n n
EQUV) = ECZ I a,)(5 115y byps)

o1 kop 1451 0B Py

£ m n n
ECZ [ ¢ L (a
i=] j=1 kel k'=1

)

£ m n . m n n
E(L f I ab,+ L [ I I a
tml y=l kxl X 3K g0} el kel k'm)

k ¥k

uP k)

fmnp + fma(n-1)pipz,
since E(aikbjk) = p and for k # k', 800 bjk' are independent, so that

E(aikbjk.) - E(aik)E(bjk.) = p1p2 .

R
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Thus. ~
a - UV - fwnp
P3 fmn(n-1)

uv - W
fmn(n-1)

has expected value pip2 .

Corollary
If G= F; = Fp, we have p = 1/3 , p; = 1/2 and p, = 1/2
so that
E(UV) = mn +-% tmn{n-1)

lmn+%£mﬂz .

l—'l!—‘ W=
™

which is the same result as derived by D. R. Whitney [17} in Section 3
for the case G = F; = F, .

Further properties of P3 are not explored, because it does not seem
to be of much importance except perhaps this statistic may be used to
test the hypothesis that all observations come from the same distribution
function against the alternative that the departure from the null hypothe-

sis is in a certain direction.

3.5 A Generalization

Let Xl.---,XN.Y be (N+1) independent random variables with continuous

cumulative distribution functions Fl,...,FN.G respectively, and
p = Prob{X, < Yyooi,Xy < 1}

Furthermore, suppose that the samples (x;;,...,xlml),....(le,...,meN),

(yx,..;,yn) of x;,...,xN,Y, respectively, are available. Then arranging
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the samples in ascending order and defining

1 1f X <z 1-1 se N
a . 13 ) k ’ »
gk kel,...,n
0 otherwise L
j(i)-l,...,m1
N ™ n N
w = Z Z z ( n a ) [

11 § g =1 kel ga1 gk

and
N W
P = —— .,

mimae. .mN'n

Then 1t can be shown that p is unbiased consistent estimate of p.
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CHAPTER IV

A DUAL PROBLFM

4.1 Introduction

Let X,Y1,...,Y,, be (N+1) random variables with continuous cumulative

N
distribution functions F,G;,...,G

N respectively. Then, in certain physi-
cal situations, as was pointed out in Chapter I, it might be of interest
to estimate the Probability that the random variable X is simultaneously
less than the N random variables Yl....,YN over a time interval [0,T].
Thus, let

(4.1) g = Prob{X < Yi,...,X < Y.} .

This problem is called a tual problem, We shall use the following nota-

tions and lemmas throughout this chapter. Let
TH = min(YIDO-v’YN))

and suppose it has a c.d.f. H¥. Then we have the following lemmas.

Lemma 4.1

P(X < Y1yeee,X < YN) = P(X < T*),

Lemma 4.2

N
He(t) = 1 -1 (1 - Gi(t)).
i=1

Proof
HA(t) = P(T* < t)

= P(min(Ya....,YN) £t)
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= 1 - Pimin(Yy,.0..,Y,) > t:

N

= 1 - Py, e, ¥, > taen,Yy > t}

(Since m(n(Yx,...,YN) st Yy oot Yo > t,...,YN > t)

= 1 - P(Y, > t)P{Yy > t) - P(YN > t)
N

a 1 - (1 - Gi(t)).
{=1

(Lt verti onter ase when N = 2, H¥(t) reduces to
W (e) = Gy (t) + Ga(t) -~ G1(t)G:(t)

Since H*{t) i{s a function of continuous c.d.f.'s, H*¥(t) 1itself is con-
tinuous, and so the probability of getting ties from the c.d.f. H* is
zere. Moreover the random variable T* is independent of X.

Next, suppose that G = G2 = ... = GN =
Yi.....Y,, have the same continuous c.d.f. Also, G has the density g
and X has the continuous c.d.f. F with densitv f and all these random

variahles are mutuallv independent. Then the densitv function of the

random variahle T* is pgiven as

hE(E) = N(L - GeN™ lace)

and thus

Lemma 4.3

a=1 1 -coMmdx .
Ji

-

Proof

a PIX 7 T#*)

ok peTR S
(P(TE > %)

G, i.e., the rendom variables
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poo

= | €1 - H*(x))dF(x)

poO

= (1~ G(x))Nf(x)dx .

-00

Lemma 4.4

1
If FuGy = ,,, GN = G, then q = e

4,2 Estimation of q When Y"""YN » X are all Independent Normal.

Let Y;,...,YN all be independent identically distributed normal
random variables with mean U, varlance a’, and let X be normal with mean
v, variance 12 and independent of all the Y's. Then

Q= P{X < Ya,.e,X < )

P(X-Y,; < O,...,X—YN < 0)

. Pl&-Y, - (p) M-V . (x-¥g)- (v-1) < B-V \
\o? + 172 (g2 4 11)}/2 (02 + 1)1/ (524:2y172)
e phoay $22Y2 = o) . (x-v) - (v—u)} g p-v \
(6% + T2)1/2 (02 + T2)1/2 (o2 + 12)1/%’
= FN(H)Q) .
where o = 72 nd
(02 + t?) ’

He —H=V____
(c? + 12)1/2

Since, for all i = 1,...,N, the random variables

X-v - v -1
1/2

o + 1)
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are equally correlated standarized normal random variables with correla-
tion coefficient p. FN(ﬁ,D) can be found using Gupta's table [6]. In

case of unknown parameters we can use their maximum likelihood estimates.

4.3 Minimum Variance Unbiased Estimation of q in Some Cases

Let X, Y, Z be independent normal with means ux, uy, uz respectively
and some variance c2. Then
q = P(X<Y, X<2)

_ P((X - Y)-(ux - uy) . u - Mo
(2)1/20 (2)1/20

20z
2% )%
Ko ((x - Y- - uv) X - 2)-(u, - uz)

)% ’ @Y%

(X -2)-(u -u) u -ux)

) is bivariate normal with

0 means, unit variances and correlation coefficient equal to 1/2. Thus
q = B Hy T Hy Mp T My }_)
1] ’ >
(2)1/20 (2)1/20 2

where B(h, k, p) is given by (2.6) .

In case of unknown parameters, we can use their maximum likelihood
estimates. Also, for minimum variance unbiased estimates, we shall state
the following theorems without proof, since the proof is exactly similar

to the proof of theorems 2.1 and 2.2.

Theorem 4.1

2

I1f the means “v’ uz and variance 7° are known, but ux is un-



known and the data (x;....,xn) on X are avallable, then the m.v.u. esti-

mate of q 1is given as

§=n uv - X uz - X n-1
(2- H172 1,1/2 2n-1 J°
n n

where _ ;0
Xx == I LI
M 1=l
Moreover, this estimate is asymptotically the same as the maximum likeli-

hood estimate for this case.

Theorem 4.2
If the mean ux and variance 0> are known but the means uy and
u, are unknown, and the data (y;,...,yg) R (zl,...,zm) on Y and Z, respec~

tively, are available, then the m.v.u. estimate of q is given by

a B(; = Py z - Hy 1 \
q = ’ ’
o2- % 7 0= 17 7 (- - 117
where _ 1 2
y = 3 I yj , and
i=1
m
E bl "%" z zk .
k=1

Moreover, as % and m become large, this estimate approaches in limit to the

maximum likelihood estimate.

4.4 Estimation of q When X Has a Normal Distribution with Mean p, Variance
g% and YigeeeoY

N ore All Independent Exponential.

Let Yi,...,Y,, all be independent and identically distributed with the

N
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density function -

e’ 1f y>0
(4.2) gly) =

0 otherwise,

and the distribution function

0 ifx<0
(4.3) G(x) = -
l-e ifx>0.

Next, suppose that X is a normal random variable with mean u and variance
c!. This might be a practical situation, for example, the electric current
supplied to a component is normally distributed with certain mean and vari-
ance whereas the capacity of the different transistors inside the component
are all exponentially distributed, The component does not fail as long as
the current supplied to the component is simultaneously less than the ca-

pacity of different transistors, othervise it fails.

In this situation, we have the following result.

Lemma 4.5

I¥ X is normally distributed with mean u and variance o? and

Y;,...,YN are independent identically distributed with density function
(4.2), then

2.2
6.8 =08 +epem+ Ha - oo -5y,

where $(x) is defined by (2.4).
Proof

By lemma 4.3, we hLave

q = r[l - 6(x) 1N (x) dx

-0n
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&‘———w

° -N
f(x)dx + Jm e X f(x)dx

o)
-1/z(igﬂ)2 Nx, =125
1/ dx + e ____1718 g dx
2 ag(2m)
00 o]
2.2
-u/c ~Nu + NZU
= [ d(y)dy + e r ¢(y)dy
N2
00 1 I;O )
2.2
—Nu + -liz_c_.
= d(-u/c) + e (1 - d(No - &)
Corollary: 1I1If y =0, 0 = 1, then
w2
g =3+ 1201 - aqvy) .

Now, suppose that a random sample distributed as X, say XlynoosXy is ob~

served. The problem here is to find the minimum variance unbiased estimate
m

of the q by use of this sample. Letting x = % z Xy this estimate is

i=]l
provided by:

Theorem 4.3

If 0 18 known and m > 2, the minimum variance unbiased escimate

of q 18 =, N2 (m-1)0?

1/2- ~N%
(4.5) § = ¢ciiﬂl—-i§5—) + e 2m

. [ 1 - {(m—l)alszz- m(m-1)1/2§ } ]
om/?[1 + m(n-2)1/2 '

And as m becomes large, this estimate approaches in the limit to the maxi-

mum likelihood estimate of q.
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Proof
Let q = q1 + q2,

where q; = ®(-u/o), and

-Nu + N2g?

q2 = e TZ (- o(No - {.i)).

To find the m.v.u. estimate of q, it would be enough to find an unbiased
estimate of q which 18 a function of a complete-sufficient statistic, in
view of the Rao-Blackwell and Lehman-Scheffe” theorems. A complete-suf-
ficient statistic in this case is x and if we can find an unbiased esti-
mate q1 of q; and an unbiased estimate §, of q, which are functions of a

complete-sufficient statistic, then m.v.u. estimate of q will be
q = d1+a;

Note that X - % (%‘E)zdx

(o]
g1 = —_— s
J (2ﬂ)1/20

-00

so that, following Lieberman and Reonikoff [8], the m.v.u. estimate of qi

is given by 1/2-

&, = O(- iﬂl..i&.o

q] 1/2 ’
(m-1)""“0

which is a function of a complete sufficient statistic.

Thus, we only need to find an unbiased estimate of q2 which is a
function of a complete sufficient statistic.

Let t; = e—Nx{
Then,

1 2
- - F7z(x1-u)

E(t)) = | e Kx1 -———%75— e 20 dxi

(27) o
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22

|- pmbamGenet)? oy s MO

- ]/') e dX] e -
(2m) 5)
2.2
-+ X

Further, let
0 if -o < g, < No?
ty =

1 otherwise ,

then

E(t?) = 1 - Prob(~= < x3 < No?)

No- K
-1-J % $(v)dy

-0

u
=1-6¢6(No - 5

Since ty I[s a function of x; alone and t2 is a function of x, alone,
“+. %X; being indevendent, implies that t; and t, are independent. Thus,

let
t = t)t; , and

we obtain

E(t) = E(t))E(t,)

_Nu + N202

—

-e 2 Q- oo - by
= q2
Thus, in view of Rao-Blackwell, Lehmann~-Scheffe” theorems, since x is a

complete-sufficient statistic, E(t|§) is m.v.u. estimate of q2. Note

that

S| 1f No? < %3 < ®, and - < x; < ®
t =
0 otherwise
-Nx3
"t Tng?,m) X2 memce
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where {1 1f a<x <b
I (x) =
(a,b) 0 otherwise
Thus,
- ~Nx b
E(t|x) = E(e I(ch’m)(xz)lx)
N
e g? o? g2
X u ‘§ ™ ';
[y
Xy ~ N3l u , ~ o Y
2
X2 u EE 0 o?

Thus, using 8a.2(v) Page 441, Rao [14], the conditional distribution of

(x1,%2) given x is

- 1, » o?
x a - o "R
N2 3 2 )
- g _]__. 2
X - (1 m)o

1

and the conditional correlation coefficient is - oD Therefore, the

conditional density of x;, x» given §, after simplification, reduces to
- m.1/2 1 " m‘l‘z—);’?[(;-)n)z'*(;-Xz)z- Sﬁ%z)il
Exiyxz|x) = T 77 5oer e '
Hence,
B(E[0 = B Ty s (xa) |)

In r Nxi  m1/2 1 2(n:2)c;2((’-“xl)2+(;-><z)z- i(xl-xz)’)

m-2) 2107
-0 Ngz

¢ dxadx,

m - = 2
- Ny - Z(m-Z)UQ(x-xl) _m_ 1/2 l m-2)o Tm-2)o T (x=x2)*~
e m-~2 ZTTO

-0

- ‘(xl-xa) )
m dxydx,
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The exponent term, except for the constant, of the second integral, is

- 2 1 ) - - 1
(x - x3)° ~ ;(xl— w2)? = x4 xg - 2%2%x - ;(xf + xg - 2x1x2)

m=-1 m - 1 2
+ 5l -~ = - 2 x))

- _ﬂ_(; - l.x])2 .

m-l m
So that,
w2 S
em 2 (m2) 172 r e dxz
No?
1 2
->t
2 _ m_ - 1 (zm
k{No 1 (x - xl)}
(where 1/k = (%)]/20)
= 1 - ¢${kNo? - ;“‘_‘_1(; —%xl)},
Thus
m - 2 m -2— -1- 2- _m— _— 1 2
el = [ T T Do) T K M e e )

-0

@2 L
-2 (2m1/Z

{1 - $(Nko?~ %‘:—1-(:-: - % x1))dx; .

Simplifying the exponent term again

1

- 2 -
2 PG 4R - 2]

m - ) - - 1
-'le - 2(m_2)°2 [x + xl - Zx)x + x° - p xl
m Lo ma1y 2 - - b2 o 2mDix o - nx?

-Nx; - T m_l[?_(m Dx? + (m-1)(1 m)xl 2(m=-1)x%yx - mx

1 -
- xf + 2x:x]

m A oy, D20 o L L -
= -Nx, " Tm-2)o” m_1[(m 2)x* + ~ X7 = 2(m-2)x1x]



m -2 -
= -Nx, - E?;:ITE?{X + x? - 2x1x]

- - 2 - g
" - Toemerld - 2 - MEDT G 4 3
_ 2(mT1)o [(xy - (% - N(mml)o 12 ~ (% - N(mml)o )2 + %2)
- “1)q2 - 2 2
- - Z(mTl)o [x) - (% - Eipml)o )12 - Nx + N (;;l)o
Therefore, D+ Ef(m—l)oz
E(L|§) = e 2m
- - 2
[m (m)1/2 . _ 2(mT1)c [x1-(R - N(mml)c )12
[—m -2 (gm 2 ¢
{1 - ®(Nko? - ﬁ(i - % xl)}dxl]
g+ Mm-1)o?
- ° 2m
- - 2 2
(myt/? 1 - 2(::1'111)02[’“‘(x - N(mm1 )2
) 172 i/z_© dx
(m-1) (2m) fo]
1/2
_ (m) 1 2 __mk - 1
r e v e vl S R
- - 2
- E?E?ITET{XI— (x - Egmallg—)}zdx1
e 4 Ni(m-1)0?
Nx + = (m) /2 1 ), _mk
e (L - 172 175 *Nke’- 25
(m-1) em ' n=

To evaluate

-0

N(m-l)cz)}z
m

- 2(mT1)oz{x"(;'
dx,)

» (% - % x1)te

the integral, use the transformation
- N(m-1)c?
X1 - (% - uiﬂall_ﬁ
t = , so that
m-1,1/2
G B
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= (®l,1/2 _ Nm-1)0?
Xx) = (m) gt + R "‘"‘—"m —
and the jacobian transformation is
dx; (2L 120 4¢
m
Thus the integral becomes
_ , - Lo
1 @ _mk oo 1 m11/2 % N(m-1)c%, 2
~—-—7—(2ﬂ)1 3 rd?[Nkc o) {x = (m ) “ot nt T e dt
-0

- - - 2
r oMK - S (mel)k - @12 ME=L)oT) )4 e) ae

-0G

. ? e kR b —K . Nk
rMNko kx + [m(m—l)]llz ot - = 0”]é(t)de

=00

1 2 - ko
$(e)P[(1 - Z)Nko? - kx + —FT _____ t]lde
_f n [m(m-1)11/2

F o(t)d(a + bt)dt

¢ a
((1 +b2)1/2

following 7.6.2, Page 35 of Owen [11] where

. @

a= (1-dme? - ik

1/2

m-1 (m-1 m-1,1/2 %
- =2 No - (=) X
m (m-2)1/2 m=-2 o



.
-

b= ke .

[m(m—l)]]/g
1/2
ISR 100 ) I - 1
2 2
-2 =012 (mme2)) Y
Therefore, _ 240 2
_ -Nx + ﬂnigglbl‘ a
d: = E(t]x) = ¢ ' (1 - ${(—————7)]
(+ b2)1/2
3/2 =
o= o NP (m-1)a? =D N - (B2lyl/2 x
“NX e 1/2 m-2 g
2m m(m-2)
= o 1 - ¢$(—
1+ 12
m(m=-2)

2 2
-Nx + N_!%Lilﬂ_
2m

= e t-¢

(m-1) 02 - mm-1)V/? % } |
o(m)l/z[m(m-Z) + 1]1/2

and the minimum variance unbiased estimate of q is, *therefore,

d = G+ a2 2 ya?
- N®(m-1)a
m %5 “Nx o+ = (1) N2 - m(m-1)1/%%
= Mo ) te (1-¢ 172 172
a(m-1)""° o(m)~"7[1 + m(m-2)]

The maximum likelihood estimate of q when 0 1s known is given as
- 2.2

A ;{ ~-Nx + NZO
a = (b(_ -;) 4+ e

X
[1 - (D(NG -E)] ’

and thus as m becomes large, the minimum variance unbiased estimate is

asymptotically the same as the maximum likelihood estimate.

Corollary 4.1

Let Y{,...,Y, all be independent exponential random variables with

N

known parameter 1, i.e., the density of Y's is given as

B
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Yy s0,a0>0

0 otherwise

o e
f(y) =

Also let X be an independent normal random variable with unknown mean u
and known variance o?. Then, the minimum variance unbiased estimate of q

based on the random sample XlseossX from X, is

uzNz(m—l)Oz

s =0 -(m)1/2§ ~oNx + 2m (m—l)3/2aNoz—m(m-1)1/2§
o(m=1) o(m)”" “f1+m(m-2))
Proof
Note that the c.d.f. of Y is
0 if x <0
G(x) = -0x
l-e if x >0,

Thus,

q-= r - 6(x) 1N E(x) dx

o
= ! f(x)dx + f“ e-aNx f(x)dx

=00 [o]
22,2
-aNu + g'_g__o_
= §(- f,i) + e [1 - $CaNoO - g)] , and therefore

by replaceing N by oN in lemma 4.5 and in theorem 4.3, we get the desired

result.

Note that if u and 0 are both unknown in lemma 4.5, then the maximum

likelihood estimate of q is

o 22
- -Nx + L5

§=o-% e 2o@-ems - 3,
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where x

3 e

m
“ X; and

i=1

(xx - ;)2.
1

"
n
iz

i

Also, if the parameter o is unknown in Cor. 4.1 and the data

Yilseaes¥q seeesYy seeesy are available, then the maximum likelihood
1 1 NmN

estimate of q 1is

L _ T2g2.2
- _ny + X_.Ni

g o= o-5H+ 211 eGns - B,
where N
yomF Loy
ND Tt
™y
y, = Ly y i=1,...,N,
1w 1

x and s? are defined above.

4.5 Estimation of q when X is uniform and Y;,...,Y
Exponential

N are all Independent

Let Y;,...,YN be all independent and identically distributed with
the density function and distribution function given by (4.2) and (4.3)
respectively, and X be uniform random variable between O and 6, i.e.,

density function of X is given by

1
f(x)'{g 0<x<2¥8

0 otherwise ,

then we have the following lemma.
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Lemma 4.6

In above case

Proof
By lemma 4.3, we have

q = ru - 600 1Ve () ax

Theorem 4.4

In this case the minimum variance unblased estimate of q is

A, b=l 1 -Nt .  m-1
mNt + m € @ Nc)’

where t = max(x;,...,xm) and Xlyeoe,X is observed random sample distributed
as X.

Proof

letu = e-le. then we obtain

E(u) = q.

Thus, since t is a complete sufficient statistic, in view of
Rao-Blackwell and Lehmann-Scheffe” theorems,E(u|t) is the m.v.u. estimate
of q. The conditional distribution of x; given t is of mixed type and its

generalized probability density function with respect to mixture of Lebesgue

and counting measure is, as given by Patil and Wani [13],
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1, 1
(I-E)E s, 0 <xy;<¢t
1
h(xl|t) = o xX= t
0 otherwise,
Thus, ¢
E(ult) = [ e-le(l - ;];) % dx1 +~;'—|e_Nt
o
-Nt
1l -Nt 6 m-1,1-e
4 € + mt( N )
m-1 1 -Nt m~1
me Tme - TP

4,6 Nonparametric Estimation

Let X, Y, Z be independent random variables with continuous cumulative

distribution functions F, G, G2 respectively, and

q = Prob(X <Y and X < 2)

= Prob(X < T%),

where T* = min(Y,Z) and let H* be c.d.f. of T*,
| Further, assume that

XiseoesXp 5 Yiseoos¥p 5 ZlaeeesZp
are samples of X, Y and Z respectively. Then, the problem of estimating
q on the basis of samples of X, Y and Z is exactly similar to that of
estimating p = Prob(X < Z , Y < Z) discussed in Chapter III. However, the
main results are stated without proof in the following, since the proof

follows exactly in the same way as in Chapter III.
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Let 1 difx, <y
aij - { i j
0 otherwise ,
1 if x; < z,
Pk =
0 otherwise, where

i=1,...,8 ; j=1,...,m ; k=1,...,n.
Further, suppose that

Upge = 834Pgy » and

£ m n

z

W1 11 31 kd1 Ugg

= number of triplets (xi, yj, zk) such that x, < y.1 ’
x1 < L
i.e., W) counts the number of times an x precedes a y and a 2 simultaneously
in the arranged sample of Rx's, my's and nz's in ascending order. Then we
have the following results.
Lemma 4.7
q=- Eg: is an unbiased estimate of q.
Proof
Uijk = 1 if and only 1f x, < vy and x, < z, 80 that E(Uijk) -
P(x1 < yj » Xy < zk) = q, and the proof follows.

Example 4.1

Let £ = 4, m= 3, n= 2, and consider the observations
X2 <y <22 <x3 <Xy €y <2y <x3<y2.
There are 3 values of x which are less than (y1, zi),

there is 1 value of x which is less than (y,, z:),
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there are 3 values of x which are less than (y2, 2:),
there is 1 value of x which is less than (y2, z2),
there is 1 value of x which is less than (ys, z1), and
there is 1| value of x which is }=sr than (ys, 2z2).
Thus the experimental value of W) is

wi=3+1+3+1+1+1 = 10
10

24 °
Also,

ajr =1, a1 =1, a31 = 0, ayy =1, aj2 =1, a22 =1, as2 = 1,

ayz =1, a3 = 0, az3 = 1, ags = 1, ayy = 0,

byjy = 1, ba; =1, ba; =0, byy =1, by =0, bz2 =1, by = 0

by2z = 0.
Thus,
~ 1 10
q-— ZZZa b__ - ——,
Lmn 14k 1§ 1k 24

Next, suppose that

¢ = °§'('r*) - r(F(t) - q)2dH*(t), and

-00

2 o 42 - _ 2

\Y oH*(x) IQ(H*(x) 1 + q)*dF(x).
-0

Then, we have the following relations.

q = [wF(t)dH*(t).

-t

l-q = wa*(x)dF(x),

-00
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waz(t)dH*(t) = q* + ¢? , and

-t

[“(1 - H*(x))2dF(x) = V¥ + q®.

=0

Thus, we have the following results.,

Theorem 4.5
The variance of Wy is given by
Var(W;) = fmn[(mn-1)v? + (2-1)(m + n ~ 1)¢* + (m + n - 1)q
+ {(-1)m+n-2) -1)}4°]-
Lemma 4.8
¢$* < q(1 - q), and

q(l - q).

<
)
A

Theorem 4.6
q is consistent estimate of q.
Proof

Var(3) = Eziz;r Var(W;)

i&;[(mn-l)vz + (-D)m+n=-1¢+(m+n - 1l)q

+ {(2-1)(m + n ~ 2)- 1}q%)

1,1 __1,.1_ 1 2,1 1__1,
gty mty o)+ (g+ mn 2mm)

(using lemma 4.8)

+0as &, myn=+>,

The above results can also be generalized.



CHAPTER V

CONCLUSION AND FURTHER RESEARCH

The major goal of this dissertation is to discuss estimation of
the reliability of a component subject to several different stresses or
resistances over a time interval [0,T], i.e., the problem is to provide
the estimate of the probability that N random variables are simultaneously
less than a random variable, where all these random variables are mutually
independent. This probability has been called p, and its dual probability,
q, as defined in Chapter IV. Parametric and nonparametric methods of esti-
mation were considered.

In a very few cases, it was poussible to derive the minimum variance
unbiased estimates, whereas in other cases the derivation of the mini-
mum variaince unbiased estimates remain an open question. For example,
in Theorem 4.3, if 0 is also unknown, which is the more realistic case,
we could not derive the minimum variance unbiased estimate. The problem
lies in finding the m.v.u. estimate of F(coz), where ¢ 18 a constant,
and F is cumulative distribution function of a normal variate with mean
u, and variance o?. More generally, if x is a function of u and o?,
then the m.v.u. estimate of F(x) has not vet been found to the best of
our knowledge except when 02 is known.

The statistic W based on ranks of the pooled sample was suggested

to estimate p unbiasedly and was shown to have certain optimum proper-

-52-
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ties. It {s felt that the statistic W is of much importance, because
only the assumption of the continuity of the cumulative distributiom
function is needed. However, the results could be extended to the dis-
continuous case with slight modifications. It is not easy to compute W
especially when the number of observations available on each random
variable is large, even in the case of N(number of random variables) = 2.
Though the use of the statistic W has been limited only to estimate
p in this dissertation, it could be used to test the hypothesis that the
random variables X;,...,XN,Y have the same continuous cumulative distri-
bution function against the alternative that Y is stochastically larger

than the N random variables X;,...,X, simultaneously, i.e., Y is sto~-

N
Ehastically larger than the maximum of X1,...,XN. This particular use
of the statistic W and possibly some other uses are open for further
research. We are presently investigating this particular use of the W
gtatistic for the special case N = 2, and as a critical region for the
hypothesis, it is proposed to use W < K, where K is chosen to give the
correct significance level. Properties of this test function, the dis-
tribution of the statistic W under the null hypothesis, approximation to
the normality, a comparison with Whitney's [17] result, etc. are under
]

consideration. Properties of this test function for the general case

and other uses of the statistic W are yet to be explored.
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